cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299251 a(n) = ((Sum_{k=1..floor((n+1)^2/4)} d(k)) - T(n)) / 2, where d(n) = number of divisors of n (A000005) and T(n) = the n-th triangular number (A000217).

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 11, 15, 21, 28, 37, 45, 55, 67, 80, 95, 110, 127, 146, 164, 187, 209, 235, 260, 286, 315, 346, 380, 413, 449, 485, 522, 564, 605, 651, 695, 743, 792, 844, 898, 950, 1006, 1064, 1123, 1185, 1250, 1318, 1384, 1451, 1523, 1596, 1670, 1747, 1828
Offset: 1

Views

Author

Luc Rousseau, Feb 06 2018

Keywords

Comments

Twice this sequence is an attempt to find a counterpart to A161664: both compare triangular numbers T(n) and partial sums of numbers of divisors S(n). A161664 computes the excess of T(n) compared to S(n), whereas 2*a(n) computes the excess of S(n') compared to T(n), where n' is chosen equal to floor((n+1)^2/4). This choice appears structurally natural and economical when illustrated in a diagram. (See provided link.)

Crossrefs

Programs

  • Mathematica
    F[n_] := Floor[(1/4)*n^2]
    A[n_] := (Sum[DivisorSigma[0, k], {k, 1, F[n + 1]}] - n*(n + 1)/2)/2
    Table[A[n], {n, 1, 100}]
  • PARI
    f(n)=floor(n^2/4)
    a(n)=(sum(k=1,f(n+1),numdiv(k))-n*(n+1)/2)/2
    for(n=1,100,print1(a(n),", "))
    
  • Python
    from math import isqrt
    def A299251(n): return (-(s:=isqrt(m:=(n+1)**2>>2))**2-(n*(n+1)>>1)>>1)+sum(m//k for k in range(1,s+1)) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = (A006218(A002620(n + 1)) - A000217(n)) / 2.