A299251 a(n) = ((Sum_{k=1..floor((n+1)^2/4)} d(k)) - T(n)) / 2, where d(n) = number of divisors of n (A000005) and T(n) = the n-th triangular number (A000217).
0, 0, 1, 2, 4, 7, 11, 15, 21, 28, 37, 45, 55, 67, 80, 95, 110, 127, 146, 164, 187, 209, 235, 260, 286, 315, 346, 380, 413, 449, 485, 522, 564, 605, 651, 695, 743, 792, 844, 898, 950, 1006, 1064, 1123, 1185, 1250, 1318, 1384, 1451, 1523, 1596, 1670, 1747, 1828
Offset: 1
Keywords
Links
- Luc Rousseau, Accompanying diagram
Programs
-
Mathematica
F[n_] := Floor[(1/4)*n^2] A[n_] := (Sum[DivisorSigma[0, k], {k, 1, F[n + 1]}] - n*(n + 1)/2)/2 Table[A[n], {n, 1, 100}]
-
PARI
f(n)=floor(n^2/4) a(n)=(sum(k=1,f(n+1),numdiv(k))-n*(n+1)/2)/2 for(n=1,100,print1(a(n),", "))
-
Python
from math import isqrt def A299251(n): return (-(s:=isqrt(m:=(n+1)**2>>2))**2-(n*(n+1)>>1)>>1)+sum(m//k for k in range(1,s+1)) # Chai Wah Wu, Oct 23 2023
Comments