cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299254 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3^4.6 2D tiling (cf. A250120).

This page as a plain text file.
%I A299254 #26 Jan 16 2025 06:55:46
%S A299254 1,7,21,45,79,122,175,237,309,391,482,583,693,813,943,1082,1231,1389,
%T A299254 1557,1735,1922,2119,2325,2541,2767,3002,3247,3501,3765,4039,4322,
%U A299254 4615,4917,5229,5551,5882,6223,6573,6933,7303,7682,8071,8469,8877,9295,9722,10159,10605,11061,11527,12002
%N A299254 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3^4.6 2D tiling (cf. A250120).
%D A299254 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #17.
%H A299254 Colin Barker, <a href="/A299254/b299254.txt">Table of n, a(n) for n = 0..1000</a>
%H A299254 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/svj">The svj tiling (or net)</a>
%H A299254 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,-2,1).
%F A299254 G.f.: (x^2+x+1)*(x^4+3*x^3+3*x+1)*(x+1) / ((x^4+x^3+x^2+x+1)*(1-x)^3). (This is the product of the g.f.'s for A250120 and A040000. - _N. J. A. Sloane_, Nov 10 2018)
%F A299254 a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>7. - _Colin Barker_, Feb 07 2018
%F A299254 a(n) = 2*((sqrt(5) - 5)*(5 + 12*n^2) - (sqrt(5) - 1)*cos(2*n*Pi/5) + (sqrt(5) - 1)*cos(4*n*Pi/5))/(5*(sqrt(5) - 5)) for n > 0. - _Stefano Spezia_, Jun 06 2024
%t A299254 LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 7, 21, 45, 79, 122, 175, 237}, 50] (* _Paolo Xausa_, Jan 16 2025 *)
%o A299254 (PARI) Vec((1 + x)*(1 + x + x^2)*(1 + 3*x + 3*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ _Colin Barker_, Feb 07 2018
%Y A299254 Cf. A040000, A250120.
%Y A299254 Partial sums: A299260.
%Y A299254 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299254 nonn,easy
%O A299254 0,2
%A A299254 _N. J. A. Sloane_, Feb 06 2018