cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299255 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.3.4.3.4 2D tiling (cf. A219529).

This page as a plain text file.
%I A299255 #22 Jun 06 2024 14:21:13
%S A299255 1,7,23,50,87,135,194,263,343,434,535,647,770,903,1047,1202,1367,1543,
%T A299255 1730,1927,2135,2354,2583,2823,3074,3335,3607,3890,4183,4487,4802,
%U A299255 5127,5463,5810,6167,6535,6914,7303,7703,8114,8535,8967,9410,9863,10327,10802,11287,11783,12290,12807,13335
%N A299255 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.3.4.3.4 2D tiling (cf. A219529).
%D A299255 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #14.
%H A299255 Colin Barker, <a href="/A299255/b299255.txt">Table of n, a(n) for n = 0..1000</a>
%H A299255 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/sve">The sve tiling (or net)</a>
%H A299255 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).
%F A299255 G.f.: (x + 1)^5 / ((x^2 + x + 1)*(1 - x)^3).
%F A299255 a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5. - _Colin Barker_, Feb 09 2018
%F A299255 a(n) = 2*(8 + 24*n^2 + A099837(n+3)/2)/9 for n > 0. - _Stefano Spezia_, Jun 06 2024
%t A299255 LinearRecurrence[{2,-1,1,-2,1},{1,7,23,50,87,135},60] (* _Harvey P. Dale_, Apr 01 2018 *)
%o A299255 (PARI) Vec((1 + x)^5 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ _Colin Barker_, Feb 09 2018
%Y A299255 Cf. A219529.
%Y A299255 See A299261 for partial sums.
%Y A299255 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%Y A299255 Cf. A099837.
%K A299255 nonn,easy
%O A299255 0,2
%A A299255 _N. J. A. Sloane_, Feb 07 2018