cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299256 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).

This page as a plain text file.
%I A299256 #33 Mar 14 2024 16:37:28
%S A299256 1,6,18,40,72,112,162,220,288,364,450,544,648,760,882,1012,1152,1300,
%T A299256 1458,1624,1800,1984,2178,2380,2592,2812,3042,3280,3528,3784,4050,
%U A299256 4324,4608,4900,5202,5512,5832,6160,6498,6844,7200,7564,7938,8320,8712,9112,9522,9940,10368,10804,11250,11704
%N A299256 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).
%D A299256 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #18.
%H A299256 Colin Barker, <a href="/A299256/b299256.txt">Table of n, a(n) for n = 0..1000</a>
%H A299256 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/kag">The kag tiling (or net)</a>
%H A299256 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A299256 G.f.: (1 + 2*x)*(x^4 - 2*x^3 - 2*x^2 - 2*x - 1) / ((x - 1)^3*(x + 1)).
%F A299256 From _Colin Barker_, Feb 09 2018: (Start)
%F A299256 a(n) = 9*n^2 / 2 for n>1.
%F A299256 a(n) = (9*n^2 - 1) / 2 for n>1.
%F A299256 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. (End)
%F A299256 E.g.f.: (2 + 4*x + 9*x*(x + 1)*cosh(x) + (9*x^2 + 9*x - 1)*sinh(x))/2. - _Stefano Spezia_, Mar 14 2024
%p A299256 seq(coeff(series((1+2*x)*(x^4-2*x^3-2*x^2-2*x-1)/((x-1)^3*(1+x)),x,n+1), x, n), n = 0 .. 35); # _Muniru A Asiru_, Oct 26 2018
%t A299256 Join[{1, 6}, LinearRecurrence[{2, 0, -2, 1}, {18, 40, 72, 112}, 50]] (* _Vincenzo Librandi_, Oct 26 2018 *)
%o A299256 (PARI) Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ _Colin Barker_, Feb 09 2018
%o A299256 (Magma) [1, 6] cat [9*n^2 div 2: n in [2..50]]; // _Vincenzo Librandi_, Oct 26 2018
%o A299256 (GAP) a:=[18,40,72,112];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; Concatenation([1,6],a); # _Muniru A Asiru_, Oct 26 2018
%Y A299256 Cf. A008579.
%Y A299256 For partial sums see A299262.
%Y A299256 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299256 nonn,easy
%O A299256 0,2
%A A299256 _N. J. A. Sloane_, Feb 07 2018