cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299257 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.12.12 2D tiling (cf. A250122).

This page as a plain text file.
%I A299257 #28 Jun 23 2024 22:08:08
%S A299257 1,5,12,22,36,56,82,111,144,183,226,272,324,382,442,505,576,653,730,
%T A299257 810,900,996,1090,1187,1296,1411,1522,1636,1764,1898,2026,2157,2304,
%U A299257 2457,2602,2750,2916,3088,3250,3415,3600,3791,3970,4152,4356,4566,4762,4961,5184,5413,5626,5842,6084,6332
%N A299257 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.12.12 2D tiling (cf. A250122).
%D A299257 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #19.
%H A299257 Colin Barker, <a href="/A299257/b299257.txt">Table of n, a(n) for n = 0..1000</a>
%H A299257 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/ttw">The ttw tiling (or net)</a>
%H A299257 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-5,7,-7,5,-3,1).
%F A299257 G.f.: (2*x^8 - 4*x^7 + 3*x^6 - 5*x^5 + x^4 - 3*x^3 - x^2 - x - 1)*(x + 1) / ((x - 1)^3*(x^2 + 1)^2).
%F A299257 From _Colin Barker_, Feb 09 2018: (Start)
%F A299257 a(n) = (4 - (2+8*i)*(-i)^n - (2-8*i)*i^n + i*((-i)^n-i^n)*n + 18*n^2) / 8 for n>2, where i=sqrt(-1).
%F A299257 a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>9. (End)
%F A299257 a(n) = 1/2 + 9*n^2/4 + (-1)^floor(n/2)*(A027656(n-1)/2 - A010699(n)/4). - _R. J. Mathar_, Feb 12 2021
%t A299257 LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {1, 5, 12, 22, 36, 56, 82, 111, 144, 183}, 60] (* _Paolo Xausa_, Jun 20 2024 *)
%o A299257 (PARI) Vec((1 + x)*(1 + x + x^2 + 3*x^3 - x^4 + 5*x^5 - 3*x^6 + 4*x^7 - 2*x^8) / ((1 - x)^3*(1 + x^2)^2) + O(x^60)) \\ _Colin Barker_, Feb 09 2018
%Y A299257 Cf. A250122.
%Y A299257 Partial sums: A299263.
%Y A299257 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299257 nonn,easy
%O A299257 0,2
%A A299257 _N. J. A. Sloane_, Feb 07 2018