cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299258 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.6.12 2D tiling (cf. A072154).

This page as a plain text file.
%I A299258 #21 Jun 06 2024 14:20:20
%S A299258 1,5,13,25,41,62,89,121,157,197,242,293,349,409,473,542,617,697,781,
%T A299258 869,962,1061,1165,1273,1385,1502,1625,1753,1885,2021,2162,2309,2461,
%U A299258 2617,2777,2942,3113,3289,3469,3653,3842,4037,4237,4441,4649,4862,5081,5305,5533,5765,6002,6245,6493,6745
%N A299258 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.6.12 2D tiling (cf. A072154).
%D A299258 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #23.
%H A299258 Colin Barker, <a href="/A299258/b299258.txt">Table of n, a(n) for n = 0..1000</a>
%H A299258 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/fst">The fst tiling (or net)</a>
%H A299258 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,-2,1).
%F A299258 G.f.: (x^2+x+1)*(x^2-x+1)*(x+1)^3 / ((x^4+x^3+x^2+x+1)*(1-x)^3).
%F A299258 a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>7. - _Colin Barker_, Feb 09 2018
%F A299258 a(n) ~ 12*n^2/5. - _Stefano Spezia_, Jun 06 2024
%t A299258 LinearRecurrence[{2,-1,0,0,1,-2,1},{1,5,13,25,41,62,89,121},60] (* _Harvey P. Dale_, Mar 14 2023 *)
%o A299258 (PARI) Vec((1 + x)^3*(1 - x + x^2)*(1 + x + x^2) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ _Colin Barker_, Feb 09 2018
%Y A299258 Cf. A072154.
%Y A299258 Partial sums: A299264.
%Y A299258 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299258 nonn,easy
%O A299258 0,2
%A A299258 _N. J. A. Sloane_, Feb 07 2018