cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299259 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.8.8 2D tiling (cf. A008576).

This page as a plain text file.
%I A299259 #33 Jun 08 2024 09:35:29
%S A299259 1,5,13,26,45,69,98,133,173,218,269,325,386,453,525,602,685,773,866,
%T A299259 965,1069,1178,1293,1413,1538,1669,1805,1946,2093,2245,2402,2565,2733,
%U A299259 2906,3085,3269,3458,3653,3853,4058,4269,4485,4706,4933,5165,5402,5645,5893,6146,6405,6669,6938,7213,7493
%N A299259 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.8.8 2D tiling (cf. A008576).
%H A299259 Colin Barker, <a href="/A299259/b299259.txt">Table of n, a(n) for n = 0..1000</a>
%H A299259 B. Grünbaum, <a href="https://faculty.washington.edu/moishe/branko/BG199.Uniform%20Tilings%20of%203-Space.pdf">Uniform tilings of 3-space</a>, Geombinatorics, 4 (1994), 49-56. See tiling #24.
%H A299259 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/fee">The fee tiling (or net)</a>
%H A299259 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).
%F A299259 G.f.: (x + 1)^3*(x^2 + 1) / ((1 - x)^3*(x^2 + x + 1)).
%F A299259 a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5. - _Colin Barker_, Feb 09 2018
%F A299259 a(n) = (4*(5 + 6*n^2) + A061347(n))/9 for n > 0. - _Stefano Spezia_, Feb 17 2024
%t A299259 CoefficientList[Series[(x+1)^3*(x^2+1)/((1-x)^3*(x^2+x+1)), {x, 0, 50}], x] (* _G. C. Greubel_, Feb 20 2018 *)
%o A299259 (PARI) Vec((1 + x)^3*(1 + x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ _Colin Barker_, Feb 09 2018
%o A299259 (Magma) I:=[13, 26, 45, 69, 98]; [1,5] cat [n le 5 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-3) - 2*Self(n-4) + Self(n-5): n in [1..30]]; // _G. C. Greubel_, Feb 20 2018
%Y A299259 Cf. A008576, A061347.
%Y A299259 Partial sums give A299265.
%Y A299259 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299259 nonn,easy
%O A299259 0,2
%A A299259 _N. J. A. Sloane_, Feb 07 2018