cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299260 Partial sums of A299254.

Original entry on oeis.org

1, 8, 29, 74, 153, 275, 450, 687, 996, 1387, 1869, 2452, 3145, 3958, 4901, 5983, 7214, 8603, 10160, 11895, 13817, 15936, 18261, 20802, 23569, 26571, 29818, 33319, 37084, 41123, 45445, 50060, 54977, 60206, 65757, 71639, 77862, 84435, 91368, 98671, 106353, 114424
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

Crossrefs

Cf. A299254.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {1, 8, 29, 74, 153, 275, 450, 687}, 50] (* Paolo Xausa, Jan 16 2025 *)
  • PARI
    Vec((1 + x)*(1 + x + x^2)*(1 + 3*x + 3*x^3 + x^4) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + x)*(1 + x + x^2)*(1 + 3*x + 3*x^3 + x^4) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n>7.
(End)
a(n) = (1/5)*(8*n^3 + 12*n^2 + 14*n + 5 + [n == 1 (mod 5)] - [n == 3 (mod 5)]). - Eric Simon Jacob, Feb 14 2023