cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299266 Coordination sequence for "cab" 3D uniform tiling formed from octahedra and truncated cubes.

This page as a plain text file.
%I A299266 #34 Sep 08 2022 08:46:20
%S A299266 1,5,9,22,37,57,82,117,145,178,229,281,322,377,445,514,577,645,730,
%T A299266 825,901,982,1093,1205,1294,1397,1525,1654,1765,1881,2026,2181,2305,
%U A299266 2434,2605,2777,2914,3065,3253,3442,3601,3765,3970,4185,4357,4534,4765,4997,5182,5381,5629,5878,6085,6297,6562,6837
%N A299266 Coordination sequence for "cab" 3D uniform tiling formed from octahedra and truncated cubes.
%C A299266 First 20 terms computed by _Davide M. Proserpio_ using ToposPro.
%D A299266 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #8.
%H A299266 Colin Barker, <a href="/A299266/b299266.txt">Table of n, a(n) for n = 0..1000</a>
%H A299266 V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, <a href="http://pubs.acs.org/doi/pdf/10.1021/cg500498k">Applied Topological Analysis of Crystal Structures with the Program Package ToposPro</a>, Cryst. Growth Des. 2014, 14, 3576-3586.
%H A299266 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/cab">The cab tiling (or net)</a>
%H A299266 Davide M. Proserpio, <a href="/A299266/a299266.txt">Summary of the 28 uniform 3D tilings and their coordination sequences (produced by ToposPro)</a>
%H A299266 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,2,0,0,0,-2,1,-1,1).
%F A299266 G.f.: (4*x^12 -4*x^11 +x^10 +5*x^8 +20*x^7 +18*x^6 +24*x^5 +14*x^4 +16*x^3 +5*x^2 +4*x +1)/((1-x)*(1-x^2)*(1-x^3)*(1+x^2)^2). - _N. J. A. Sloane_, Feb 12 2018
%F A299266 a(n) = a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-10) for n>12. - _Colin Barker_, Feb 15 2018
%t A299266 CoefficientList[Series[(4*x^12-4*x^11+x^10+5*x^8+20*x^7+18*x^6+24*x^5 +14*x^4+16*x^3+5*x^2+4*x+1)/((1-x)*(1-x^2)*(1-x^3)*(1+x^2)^2), {x,0, 50}], x] (* _G. C. Greubel_, Feb 20 2018 *)
%o A299266 (PARI) Vec((1 + 4*x + 5*x^2 + 16*x^3 + 14*x^4 + 24*x^5 + 18*x^6 + 20*x^7 + 5*x^8 + x^10 - 4*x^11 + 4*x^12) / ((1 - x)^3*(1 + x)*(1 + x^2)^2*(1 + x + x^2)) + O(x^60)) \\ _Colin Barker_, Feb 15 2018
%o A299266 (Magma) I:=[22, 37, 57, 82, 117, 145, 178,229, 281,322]; [1,5,9] cat [n le 10 select I[n] else Self(n-1) -Self(n-2) +2*Self(n-3)-2*Self(n-7)+Self(n-8)-Self(n-9) + Self(n-10): n in [1..30]]; // _G. C. Greubel_, Feb 20 2018
%Y A299266 See A299267 for partial sums.
%Y A299266 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299266 nonn,easy
%O A299266 0,2
%A A299266 _N. J. A. Sloane_, Feb 07 2018
%E A299266 a(21)-a(40) from _Davide M. Proserpio_, Feb 12 2018