cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299268 Coordination sequence for "crs" 3D uniform tiling formed from tetrahedra and truncated tetrahedra.

This page as a plain text file.
%I A299268 #26 Mar 14 2024 23:26:20
%S A299268 1,6,18,48,78,126,182,240,330,390,522,576,758,798,1038,1056,1362,1350,
%T A299268 1730,1680,2142,2046,2598,2448,3098,2886,3642,3360,4230,3870,4862,
%U A299268 4416,5538,4998,6258,5616,7022,6270,7830,6960,8682,7686,9578,8448,10518,9246
%N A299268 Coordination sequence for "crs" 3D uniform tiling formed from tetrahedra and truncated tetrahedra.
%C A299268 First 20 terms computed by _Davide M. Proserpio_ using ToposPro.
%D A299268 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #6.
%H A299268 Colin Barker, <a href="/A299268/b299268.txt">Table of n, a(n) for n = 0..1000</a>
%H A299268 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/crs">The crs tiling (or net)</a>
%H A299268 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).
%F A299268 G.f.: (x^6 + 27*x^4 + 30*x^3 + 15*x^2 + 6*x + 1) / (1 - x^2)^3.
%F A299268 From _Colin Barker_, Feb 09 2018: (Start)
%F A299268 a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
%F A299268 a(n) = (11*n^2 - 6*n + 4) / 2 for n>0 and even.
%F A299268 a(n) = 3 * (3*n^2 + 2*n - 1) / 2 for n odd. (End)
%F A299268 E.g.f.: ((11*x^2 + 15*x + 4)*cosh(x) + (9*x^2 + 5*x - 3)*sinh(x) - 2)/2. - _Stefano Spezia_, Mar 14 2024
%t A299268 CoefficientList[Series[(x^6+27*x^4+30*x^3+15*x^2+6*x+1)/(1-x^2)^3, {x, 0, 50}], x] (* _G. C. Greubel_, Feb 20 2018 *)
%o A299268 (PARI) Vec((1 + 6*x + 15*x^2 + 30*x^3 + 27*x^4 + x^6) / ((1 - x)^3*(1 + x)^3) + O(x^60)) \\ _Colin Barker_, Feb 09 2018
%o A299268 (Magma) I:=[18, 48, 78, 126, 182, 240, 330]; [1,6] cat [n le 6 select I[n] else 3*Self(n-2) -3*Self(n-4) + Self(n-6): n in [1..30]]; // _G. C. Greubel_, Feb 20 2018
%Y A299268 See A299269 for partial sums.
%Y A299268 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299268 nonn,easy
%O A299268 0,2
%A A299268 _N. J. A. Sloane_, Feb 07 2018