cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299272 Coordination sequence for "flu" 3D uniform tiling formed from tetrahedra, rhombicuboctahedra, and cubes.

This page as a plain text file.
%I A299272 #38 Mar 02 2025 14:33:46
%S A299272 1,6,18,37,63,99,142,189,249,317,384,468,562,648,756,877,981,1113,
%T A299272 1262,1383,1539,1717,1854,2034,2242,2394,2598,2837,3003,3231,3502,
%U A299272 3681,3933,4237,4428,4704,5042,5244,5544,5917,6129,6453,6862,7083,7431,7877,8106,8478,8962,9198
%N A299272 Coordination sequence for "flu" 3D uniform tiling formed from tetrahedra, rhombicuboctahedra, and cubes.
%C A299272 First 20 terms computed by _Davide M. Proserpio_ using ToposPro.
%C A299272 The tiling is called "3-RCO-trille" in Conway, Burgiel, Goodman-Strauss, 2008, p. 297. - _Felix Fröhlich_, Feb 11 2018
%D A299272 J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.
%D A299272 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #5.
%H A299272 G. C. Greubel, <a href="/A299272/b299272.txt">Table of n, a(n) for n = 0..5000</a>
%H A299272 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/flu">The flu tiling (or net)</a>
%H A299272 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetrahedral-octahedral_honeycomb#Runcic_cubic_honeycomb">Tetrahedral-octahedral honeycomb - Runcic cubic honeycomb</a>
%H A299272 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,-3,0,0,1).
%F A299272 Conjectures from _Colin Barker_, Feb 11 2018: (Start)
%F A299272 G.f.: (1 + x)^3*(1 + x^2)*(1 + 3*x + 5*x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)^3).
%F A299272 a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>9.
%F A299272 (End)
%F A299272 G.f.: (x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3 / (1-x^3)^3. - _N. J. A. Sloane_, Feb 12 2018 (This confirms my conjecture from Feb 10 2018 and the above conjecture from _Colin Barker_.)
%F A299272 a(n) = (60 + 104*n^2 + (n^2 - 6)*cos(2*n*Pi/3) - 3*sqrt(3)*n*sin(2*n*Pi/3))/27 for n > 0. - _Stefano Spezia_, Jan 23 2022
%t A299272 CoefficientList[Series[(x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3/(1-x^3)^3, {x, 0, 50}], x] (* _G. C. Greubel_, Feb 20 2018 *)
%o A299272 (PARI) x='x+O('x^30); Vec((x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3/(1-x^3)^3) \\ _G. C. Greubel_, Feb 20 2018
%o A299272 (Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3/(1-x^3)^3)); // _G. C. Greubel_, Feb 20 2018
%Y A299272 See A299273 for partial sums.
%Y A299272 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299272 nonn,easy
%O A299272 0,2
%A A299272 _N. J. A. Sloane_, Feb 10 2018
%E A299272 a(21)-a(40) from _Davide M. Proserpio_, Feb 12 2018