A299278 Partial sums of A299277.
1, 6, 19, 45, 91, 164, 268, 408, 595, 835, 1127, 1479, 1896, 2378, 2945, 3605, 4345, 5183, 6127, 7158, 8308, 9598, 10997, 12528, 14205, 15992, 17936, 20066, 22327, 24758, 27382, 30132, 33073, 36253, 39587, 43125, 46902, 50822, 54971, 59411, 64021, 68873, 74017, 79314, 84874
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied Topological Analysis of Crystal Structures with the Program Package ToposPro, Cryst. Growth Des. 2014, 14, 3576-3586.
- Reticular Chemistry Structure Resource (RCSR), The pcu-i tiling (or net)
- Index entries for linear recurrences with constant coefficients, signature (1,-1,2,-1,1,1,-2,2,-4,2,-2,1,1,-1,2,-1,1,-1).
Crossrefs
Cf. A299277.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
PARI
Vec((x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 - x)*(1 + x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^60)) \\ Colin Barker, Feb 14 2018
Formula
G.f.: (x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 - x)*(1 + x^2)*(1 - x^3)*(1 - x^6)^2). - N. J. A. Sloane, Feb 13 2018
a(n) = a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 4*a(n-9) + 2*a(n-10) - 2*a(n-11) + a(n-12) + a(n-13) - a(n-14) + 2*a(n-15) - a(n-16) + a(n-17) - a(n-18) for n>21. - Colin Barker, Feb 14 2018
Comments