A299290 Partial sums of A299289.
1, 9, 37, 97, 203, 367, 603, 923, 1341, 1869, 2521, 3309, 4247, 5347, 6623, 8087, 9753, 11633, 13741, 16089, 18691, 21559, 24707, 28147, 31893, 35957, 40353, 45093, 50191, 55659, 61511, 67759, 74417, 81497, 89013, 96977, 105403, 114303, 123691
Offset: 0
Keywords
Crossrefs
Cf. A299289.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Formula
Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (12 + 34*n + 39*n^2 + 26*n^3) / 12 for n even.
a(n) = (9 + 34*n + 39*n^2 + 26*n^3) / 12 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.
(End)