cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299292 Partial sums of A299291.

Original entry on oeis.org

1, 6, 20, 49, 105, 190, 320, 501, 727, 1026, 1408, 1853, 2391, 3026, 3734, 4579, 5541, 6620, 7838, 9201, 10657, 12328, 14136, 16123, 18293, 20658, 23128, 25905, 28825, 31994, 35388, 39029, 42779, 46942, 51240, 55865, 60755, 65946, 71242, 77071, 83013, 89368, 96026
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A299291.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2).
a(n) = a(n-2) + a(n-3) - a(n-5) + 2*a(n-6) - 2*a(n-8) - 2*a(n-9) + 2*a(n-11) - a(n-12) + a(n-14) + a(n-15) - a(n-17) for n>17. - Colin Barker, Feb 14 2018