This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299300 #20 Feb 21 2018 19:10:46 %S A299300 1,3,7,35,39,43,51,55,79,87,91,107,111,115,835,843,1391,1407,1411, %T A299300 1471,1579,1587,1651,1663,1843,1851,3383,3491,3507,3515,3519,3547, %U A299300 3659,3691,3719,3747,3779,3819,3823,3843,3851,3855,3871,3899,3939,3947,3987,3991 %N A299300 Values of k such that A065358(k-1) = 0. %C A299300 Obtained by adding 1 to the terms of A064940. %C A299300 Fraile et al. (2017) describe essentially the same sequence as A065358 except with offset 1 instead of 0. So the present sequence gives the values of k so that their version of the Jacob's Ladder sequence has the value 0. %C A299300 For the first 7730 terms, see the b-file in A064940. %H A299300 Alberto Fraile, Roberto MartÃnez, and Daniel Fernández, <a href="https://arxiv.org/abs/1801.01540">Jacob's Ladder: Prime numbers in 2d</a>, arXiv preprint arXiv:1801.01540 [math.HO], 2017. %t A299300 A065358:= Table[Sum[(-1)^(PrimePi[k]), {k,1,n}], {n, 0, 500}]; Select[Range[50], A065358[[#]] == 0 &] (* _G. C. Greubel_, Feb 20 2018 *) %o A299300 (Python) %o A299300 from sympy import nextprime %o A299300 A299300_list, p, d, n, r = [], 2, -1, 0, False %o A299300 while n <= 10**6: %o A299300 pn, k = p-n, d if r else -d %o A299300 if 0 < k <= pn: %o A299300 A299300_list.append(n+k) %o A299300 d += -pn if r else pn %o A299300 r, n, p = not r, p, nextprime(p) # _Chai Wah Wu_, Feb 21 2018 %Y A299300 Cf. A065358, A064940. %K A299300 nonn %O A299300 1,2 %A A299300 _N. J. A. Sloane_, Feb 20 2018