A299323 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers in which the number of 2's is n; see Comments.
1, 4, 3, 5, 8, 6, 11, 9, 14, 13, 12, 10, 17, 28, 27, 15, 18, 19, 29, 56, 55, 24, 20, 21, 35, 57, 112, 111, 26, 22, 30, 39, 59, 113, 224, 223, 32, 23, 36, 43, 71, 115, 225, 448, 447, 33, 25, 37, 58, 79, 119, 227, 449, 896, 895, 50, 31, 40, 60, 87, 143, 231
Offset: 1
Examples
Northwest corner: 1 4 5 11 12 15 3 8 9 10 18 20 6 14 17 19 21 30 13 28 29 35 39 43 27 56 57 59 71 79 55 112 113 115 119 143
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 400; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 18, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] r[n_] := Select[Range[5000], Count[t[#], 2] == n &] TableForm[Table[r[n], {n, 1, 15}]] (* this array *) w[n_, k_] := r[n][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *)
Comments