A299324 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers in which the number of 3's is n; see Comments.
2, 4, 7, 5, 11, 16, 8, 12, 24, 34, 9, 15, 26, 50, 70, 10, 18, 32, 54, 102, 142, 14, 20, 33, 66, 110, 206, 286, 17, 22, 38, 68, 134, 222, 414, 574, 19, 23, 42, 69, 138, 270, 446, 830, 1150, 21, 25, 46, 78, 140, 278, 542, 894, 1662, 2302, 28, 30, 48, 86, 141
Offset: 1
Examples
Northwest corner: 2 4 5 8 9 10 7 11 12 15 18 20 16 24 26 32 33 38 34 50 54 66 68 69 70 102 110 134 138 140
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 400; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 18, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] r[n_] := Select[Range[5000], Count[t[#], 3] == n &] TableForm[Table[r[n], {n, 1, 15}]] (* this array *) w[n_, k_] := r[n][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *)
Comments