A299325 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers that start with n 2's, for n >= 1; see Comments.
1, 4, 3, 10, 9, 6, 15, 21, 19, 13, 17, 31, 43, 39, 27, 23, 35, 63, 87, 79, 55, 25, 47, 71, 127, 175, 159, 111, 29, 51, 95, 143, 255, 351, 319, 223, 33, 59, 103, 191, 287, 511, 703, 639, 447, 37, 67, 119, 207, 383, 575, 1023, 1407, 1279, 895, 41, 75, 135, 239
Offset: 1
Examples
Northwest corner: 1 4 10 15 17 23 25 3 9 21 31 35 47 51 6 19 43 63 71 95 103 13 39 87 127 143 191 207 27 79 175 255 287 383 415
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 500; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 17, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] s = Select[Range[60000], Count[First[Split[t[#]]], 3] == 0 & ]; r[n_] := Select[s, Length[First[Split[t[#]]]] == n &, 12] TableForm[Table[r[n], {n, 1, 11}]] (* this array *) w[n_, k_] := r[n][[k]]; Table[w[n - k + 1, k], {n, 11}, {k, n, 1, -1}] // Flatten (* this sequence *)
Comments