This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299326 #14 Aug 07 2024 15:21:55 %S A299326 2,5,7,8,12,16,11,18,26,34,14,24,38,54,70,20,30,50,78,110,142,22,42, %T A299326 62,102,158,222,286,28,46,86,126,206,318,446,574,32,58,94,174,254,414, %U A299326 638,894,1150,36,66,118,190,350,510,830,1278,1790,2302 %N A299326 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers that start with n 3's, for n >= 1; see Comments. %C A299326 Suppose that S is a set of real numbers. An S-power-tower, t, is a number t = x(1)^x(2)^...^x(k), where k >= 1 and x(i) is in S for i = 1..k. We represent t by (x(1), x(2), ..., x(k)), which for k > 1 is defined as (x(1), (x(2), ..., x(k))); (2,3,2) means 2^9. The number k is the *height* of t. If every element of S exceeds 1 and all the power towers are ranked in increasing order, the position of each in the resulting sequence is its *rank*. See A299229 for a guide to related sequences. %C A299326 As sequences, this one and A299325 partition the positive integers. %D A299326 1 %e A299326 Northwest corner: %e A299326 2 5 8 11 14 20 22 %e A299326 7 12 18 24 30 42 46 %e A299326 16 26 38 50 62 86 94 %e A299326 34 54 78 102 126 174 190 %e A299326 70 110 158 206 254 350 382 %t A299326 t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; %t A299326 t[6] = {2, 2, 2}; t[7] = {3, 3}; %t A299326 t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; %t A299326 t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; %t A299326 z = 500; g[k_] := If[EvenQ[k], {2}, {3}]; %t A299326 f = 6; While[f < 13, n = f; While[n < z, p = 1; %t A299326 While[p < 17, m = 2 n + 1; v = t[n]; k = 0; %t A299326 While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; %t A299326 p = p + 1; n = m]]; f = f + 1] %t A299326 s = Select[Range[60000], Count[First[Split[t[#]]], 2] == 0 & ]; %t A299326 r[n_] := Select[s, Length[First[Split[t[#]]]] == n &, 12] %t A299326 TableForm[Table[r[n], {n, 1, 10}]] (* this array *) %t A299326 w[n_, k_] := r[n][[k]]; %t A299326 Table[w[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* this sequence *) %Y A299326 Cf. A299229, A299325. %K A299326 nonn,easy,tabl %O A299326 1,1 %A A299326 _Clark Kimberling_, Feb 08 2018