This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299327 #15 Aug 08 2024 08:31:57 %S A299327 1,2,3,4,7,6,5,8,14,13,10,9,16,28,27,11,12,19,34,56,55,22,15,26,39,70, %T A299327 112,111,23,17,29,54,79,142,224,223,45,18,30,57,110,159,286,448,447, %U A299327 48,20,33,58,113,222,319,574,896,895,92,21,38,69,114,225,446 %N A299327 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers in which the maximal runlength is n; see Comments. %C A299327 Suppose that S is a set of real numbers. An S-power-tower, t, is a number t = x(1)^x(2)^...^x(k), where k >= 1 and x(i) is in S for i = 1..k. We represent t by (x(1), x(2), ..., x(k)), which for k > 1 is defined as (x(1), (x(2), ..., x(k))); (2,3,2) means 2^9. The number k is the *height* of t. If every element of S exceeds 1 and all the power towers are ranked in increasing order, the position of each in the resulting sequence is its *rank*. See A299229 for a guide to related sequences. %e A299327 Northwest corner: %e A299327 1 2 4 5 10 11 22 23 45 48 %e A299327 3 7 8 9 12 15 17 18 20 21 %e A299327 6 14 16 19 26 29 30 33 38 40 %e A299327 13 28 34 39 54 57 58 69 78 80 %e A299327 27 56 70 79 110 113 114 141 158 160 %t A299327 t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; %t A299327 t[6] = {2, 2, 2}; t[7] = {3, 3}; %t A299327 t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; %t A299327 t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; %t A299327 z = 500; g[k_] := If[EvenQ[k], {2}, {3}]; %t A299327 f = 6; While[f < 13, n = f; While[n < z, p = 1; %t A299327 While[p < 15, m = 2 n + 1; v = t[n]; k = 0; %t A299327 While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; %t A299327 p = p + 1; n = m]]; f = f + 1] %t A299327 r[n_] := Select[Range[30000], Max[Map[Length, Split[t[#]]]] == n & , 12]; %t A299327 TableForm[Table[r[n], {n, 1, 12}]] (* this array *) %t A299327 w[n_, k_] := r[n][[k]]; %t A299327 Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *) %Y A299327 Cf. A299229. %K A299327 nonn,easy,tabl %O A299327 1,2 %A A299327 _Clark Kimberling_, Feb 08 2018