cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299338 Expansion of 1 / ((1 - x)^7*(1 + x)^6).

This page as a plain text file.
%I A299338 #10 Oct 09 2018 15:50:45
%S A299338 1,1,7,7,28,28,84,84,210,210,462,462,924,924,1716,1716,3003,3003,5005,
%T A299338 5005,8008,8008,12376,12376,18564,18564,27132,27132,38760,38760,54264,
%U A299338 54264,74613,74613,100947,100947,134596,134596,177100,177100,230230,230230
%N A299338 Expansion of 1 / ((1 - x)^7*(1 + x)^6).
%C A299338 Same as A000579 but with repeated terms.
%H A299338 Colin Barker, <a href="/A299338/b299338.txt">Table of n, a(n) for n = 0..1000</a>
%H A299338 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
%F A299338 a(n) = (2*n^6 + 84*n^5 + 1400*n^4 + 11760*n^3 + 51968*n^2 + 112896*n + 92160) / 92160 for n even.
%F A299338 a(n) = (2*n^6 + 72*n^5 + 1010*n^4 + 6960*n^3 + 24278*n^2 + 39048*n + 20790) / 92160 for n odd.
%F A299338 a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13) for n>12.
%t A299338 CoefficientList[Series[1/((1-x)^7(1+x)^6),{x,0,50}],x] (* or *) LinearRecurrence[ {1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{1,1,7,7,28,28,84,84,210,210,462,462,924},50] (* _Harvey P. Dale_, Oct 09 2018 *)
%o A299338 (PARI) Vec(1 / ((1 - x)^7*(1 + x)^6) + O(x^40))
%Y A299338 Cf. A000579, A001769, A060099, A299335, A299336, A299337.
%K A299338 nonn,easy
%O A299338 0,3
%A A299338 _Colin Barker_, Feb 07 2018