cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A299337 Expansion of 1 / ((1 - x)^7*(1 + x)^5).

Original entry on oeis.org

1, 2, 8, 14, 35, 56, 112, 168, 294, 420, 672, 924, 1386, 1848, 2640, 3432, 4719, 6006, 8008, 10010, 13013, 16016, 20384, 24752, 30940, 37128, 45696, 54264, 65892, 77520, 93024, 108528, 128877, 149226, 175560, 201894, 235543, 269192, 311696, 354200, 407330
Offset: 0

Views

Author

Colin Barker, Feb 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1}, {1, 2, 8, 14, 35, 56, 112, 168, 294, 420, 672, 924}, 41] (* Michael De Vlieger, Dec 19 2024 *)
  • PARI
    Vec(1 / ((1 - x)^7*(1 + x)^5) + O(x^40))

Formula

a(n) = (2*n^6 + 72*n^5 + 1040*n^4 + 7680*n^3 + 30368*n^2 + 60288*n + 46080) / 46080 for n even.
a(n) = (2*n^6 + 72*n^5 + 1010*n^4 + 6960*n^3 + 24278*n^2 + 39048*n + 20790) / 46080 for n odd.
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12) for n>11.

A299335 Expansion of 1 / ((1 - x)^7*(1 + x)^2).

Original entry on oeis.org

1, 5, 17, 45, 103, 211, 399, 707, 1190, 1918, 2982, 4494, 6594, 9450, 13266, 18282, 24783, 33099, 43615, 56771, 73073, 93093, 117481, 146965, 182364, 224588, 274652, 333676, 402900, 483684, 577524, 686052, 811053, 954465, 1118397, 1305129, 1517131, 1757063
Offset: 0

Views

Author

Colin Barker, Feb 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)^7 (1 + x)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -8, 0, 14, -14, 0, 8, -5, 1}, {1, 5, 17, 45, 103, 211, 399, 707, 1190}, 41] (* Robert G. Wilson v, Feb 07 2018 *)
  • PARI
    Vec(1 / ((1 - x)^7*(1 + x)^2) + O(x^40))

Formula

a(n) = (2*n^6 + 54*n^5 + 575*n^4 + 3060*n^3 + 8468*n^2 + 11376*n + 5760) / 5760 for n even.
a(n) = (2*n^6 + 54*n^5 + 575*n^4 + 3060*n^3 + 8468*n^2 + 11286*n + 5355) / 5760 for n odd.
a(n) = 5*a(n-1) - 8*a(n-2) + 14*a(n-4) - 14*a(n-5) + 8*a(n-7) - 5*a(n-8) + a(n-9) for n>8.

A299336 Expansion of 1 / ((1 - x)^7*(1 + x)^4).

Original entry on oeis.org

1, 3, 10, 22, 49, 91, 168, 280, 462, 714, 1092, 1596, 2310, 3234, 4488, 6072, 8151, 10725, 14014, 18018, 23023, 29029, 36400, 45136, 55692, 68068, 82824, 99960, 120156, 143412, 170544, 201552, 237405, 278103, 324786, 377454, 437437, 504735, 580888, 665896
Offset: 0

Views

Author

Colin Barker, Feb 07 2018

Keywords

Crossrefs

Programs

  • PARI
    Vec(1 / ((1 - x)^7*(1 + x)^4) + O(x^40))

Formula

a(n) = (2*n^6 + 66*n^5 + 860*n^4 + 5640*n^3 + 19568*n^2 + 33984*n + 23040) / 23040 for n even.
a(n) = (2*n^6 + 66*n^5 + 860*n^4 + 5580*n^3 + 18578*n^2 + 28914*n + 15120) / 23040 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11) for n>10.
Showing 1-3 of 3 results.