This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299405 #8 May 01 2018 03:00:18 %S A299405 1,5,9,14,18,22,27,31,35,39,43,48,52,56,60,65,69,73,77,82,86,90,95,99, %T A299405 103,107,111,116,120,124,128,133,137,141,145,150,154,158,163,167,171, %U A299405 175,179,184,188,192,196,201,205,209,213,218,222,226,231,235,239 %N A299405 Solution (a(n)) of the system of 5 complementary equations in Comments. %C A299405 Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;: %C A299405 a(n) = least new; %C A299405 b(n) = least new; %C A299405 c(n) = least new; %C A299405 d(n) = least new; %C A299405 e(n) = a(n) + b(n) + c(n) + d(n); %C A299405 where "least new k" means the least positive integer not yet placed. %C A299405 *** %C A299405 Conjecture: for all n >= 0, %C A299405 0 <= 17n - 11 - 4 a(n) <= 4 %C A299405 0 <= 17n - 7 - 4 b(n) <= 4 %C A299405 0 <= 17n - 3 - 4 c(n) <= 3 %C A299405 0 <= 17n + 1 - 4 d(n) <= 3 %C A299405 0 <= 17n - 5 - e(n) <= 3 %C A299405 *** %C A299405 The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers). %H A299405 Clark Kimberling, <a href="/A299405/b299405.txt">Table of n, a(n) for n = 0..1000</a> %e A299405 n: 0 1 2 3 4 5 6 7 8 9 %e A299405 a: 1 5 9 14 18 22 27 31 35 39 %e A299405 b: 2 6 11 15 19 23 28 32 36 40 %e A299405 c: 3 7 12 16 20 24 29 33 37 41 %e A299405 d: 4 8 13 17 21 25 30 34 38 42 %e A299405 e: 10 26 45 62 78 94 114 130 146 162 %t A299405 z = 200; %t A299405 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A299405 a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e, %t A299405 Last[a] + Last[b] + Last[c] + Last[d]]; %t A299405 Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]], %t A299405 AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]], %t A299405 AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]], %t A299405 AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]], %t A299405 AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}]; %t A299405 Take[a, 100] (* A299405 *) %t A299405 Take[b, 100] (* A299637 *) %t A299405 Take[c, 100] (* A299638 *) %t A299405 Take[d, 100] (* A299641 *) %t A299405 Take[e, 100] (* A299409 *) %Y A299405 Cf. A036554, A299634, A299637, A299638, A299641, A299409. %K A299405 nonn,easy %O A299405 0,2 %A A299405 _Clark Kimberling_, Apr 22 2018