This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299415 #57 Aug 12 2025 20:31:04 %S A299415 2,8,30,97,312,991,3140,9933,31414,99344,314157,993457,3141591, %T A299415 9934586,31415925,99345881,314159263,993458825,3141592652,9934588264 %N A299415 Number of steps of iterating z -> z^2 + c with c = 1/4 + 10^(-n) to reach z > 2, starting with z = 0. %C A299415 A relation between Pi and the Mandelbrot set: a(n)*10(-n/2) converges to Pi. %C A299415 c = 1/4 is the largest real number in the Mandelbrot set. %C A299415 The difference between the terms of b(n) = floor(Pi*sqrt(10^n)) = 3, 9, 31, 99, 314, 993, 3141, 9934, 31415, 99345, 314159, 993458, ... and a(n) is d(n) = 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ... %D A299415 Heinz-Otto Peitgen; Hartmut Jürgens; Dietmar Saupe: Chaos. Bausteine der Ordnung. Berlin; Heidelberg: Springer, 1994, p. 452-456. %H A299415 Gerald Edgar, <a href="https://people.math.osu.edu/edgar.2/piand.html">Pi and the Mandelbrot set.</a> (The Ohio State University.) %H A299415 Boris Gourévitch, <a href="http://www.pi314.net/eng/mandelbrot.php">Pi and fractal sets. The Mandelbrot set -- Dave Boll -- Gerald Edgar.</a> (The World of Pi.) %H A299415 Brady Haran and Holly Krieger, <a href="https://youtu.be/d0vY0CKYhPY">Pi and the Mandelbrot Set</a>, Numberphile channel on YouTube, Oct. 1, 2015. %H A299415 Aaron Klebanoff, <a href="https://pdfs.semanticscholar.org/dbed/13dae724fed20356b81be91c63fc13b1e1b8.pdf">Pi in the Mandelbrot Set</a>, Fractals 9 (2001), nr. 4, p. 393-402. %p A299415 Digits:=10^3: %p A299415 f:=proc(z,c,k) option remember; %p A299415 f(z,c,k-1)^2+c; %p A299415 end; %p A299415 a:=proc(n) %p A299415 local epsilon, c, k; %p A299415 epsilon:=10.^(-n): %p A299415 c:=0.25+epsilon: %p A299415 f(0,c,0):=0: %p A299415 for k do %p A299415 if abs(f(0,c,k))>2 then %p A299415 break; %p A299415 fi; %p A299415 od: %p A299415 return(k); %p A299415 end; %p A299415 seq(a(n),n=0..11); %t A299415 digits = 10^3; %t A299415 f[z_, c_, k_] := f[z, c, k] = f[z, c, k-1]^2 + c; %t A299415 a[n_] := Module[{epsilon = 10^-n, c, k}, c = N[1/4 + epsilon, digits]; f[0, c, 0] = 0; For[k = 1, True, k++, If[Abs[f[0, c, k]] > 2, Break[]]]; k]; %t A299415 a /@ Range[0, 11] (* _Jean-François Alcover_, Nov 05 2020, after Maple *) %o A299415 (PARI) apply( {A299415(n)=A332061(10^n)}, [0..12]) \\ a(12) may take about a second to compute. - _M. F. Hasler_, Feb 22 2020 %o A299415 (Python) A299415 = lambda n: A332061(10**n) # Warning: may give incorrect result for default (double) precision for n >= 12. - _M. F. Hasler_, Feb 22 2020 %Y A299415 Cf. A011545, A097486, A300078. %Y A299415 Cf. A332061, A332062 (same with epsilon = 1/n resp. 1/2^n). %K A299415 nonn,more %O A299415 0,1 %A A299415 _Martin Renner_, Feb 21 2018 %E A299415 Edited and extended to a(14) by _M. F. Hasler_, Feb 22 2020 %E A299415 a(15)-a(19) from _Bill McEachen_, Aug 10 2025