A299421 Solution b( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 4, a(1) = 5; see Comments.
1, 2, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 90, 91, 93, 94, 96, 97, 99, 100
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 4; a[1] = 5; b[0] = 1; b[1] = 2; a[n_] := a[n] = b[n - 1] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299420 *) Table[b[n], {n, 0, 100}] (* A299421 *)
Comments