This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299423 #8 May 05 2018 04:18:11 %S A299423 4,7,16,21,24,29,32,37,44,49,56,63,66,71,78,83,88,91,98,103,106,113, %T A299423 116,121,128,131,136,143,147,152,154,164,168,173,180,185,189,191,200, %U A299423 203,210,214,219,225,234,237,240,243,250,255,262,267,272,275,281,291 %N A299423 Solution (c(n)) of the system of 3 complementary equations in Comments. %C A299423 Define sequences a(n), b(n), c(n) recursively: %C A299423 a(n) = least new; %C A299423 b(n) = least new > = a(n) + n + 1; %C A299423 c(n) = a(n) + b(n); %C A299423 where "least new k" means the least positive integer not yet placed. %C A299423 *** %C A299423 The sequences a,b,c partition the positive integers. %C A299423 *** %C A299423 Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then %C A299423 x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67)) %C A299423 x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1. (The same limits occur in A298868 and A297838.) %H A299423 Clark Kimberling, <a href="/A299423/b299423.txt">Table of n, a(n) for n = 0..1000</a> %e A299423 n: 0 1 2 3 4 5 6 7 8 9 10 %e A299423 a: 1 2 6 8 9 11 12 14 17 19 22 %e A299423 b: 3 5 10 13 15 18 20 23 27 30 34 %e A299423 c: 4 7 16 21 24 29 32 37 44 49 56 %t A299423 z = 200; %t A299423 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A299423 a = {}; b = {}; c = {}; n = 0; %t A299423 Do[{n++; %t A299423 AppendTo[a, %t A299423 mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]], %t A299423 AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + n + 1]], %t A299423 AppendTo[c, Last[a] + Last[b]]}, {z}]; %t A299423 (* _Peter J. C. Moses_, Apr 23 2018 *) %t A299423 Take[a, 100] (* A297469 *) %t A299423 Take[b, 100] (* A299533 *) %t A299423 Take[c, 100] (* A299423 *) %t A299423 (* _Peter J. C. Moses_, Apr 23 2018 *) %Y A299423 Cf. A299634, A298868, A297838, A297469, A299533. %K A299423 nonn,easy %O A299423 0,1 %A A299423 _Clark Kimberling_, May 01 2018