This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299424 #13 Feb 14 2018 09:23:58 %S A299424 1,2,3,16,214,4268,110520,3493432,130094524,5576660656,270624533544, %T A299424 14679297273336,880950418422088,57999873220558048,4159207521351394736, %U A299424 322857188993783461264,26982279001217007103104,2416289398989507579797760,230882321991151748812644944,23451581238859769517764695488,2523663354227008958133677737296 %N A299424 G.f. A(x) satisfies: 1 = Sum_{n>=0} binomial((n+1)*(n+2), n) / ((n+1)*(n+2)/2) * x^n / A(x)^((n+1)*(n+2)/2). %C A299424 Compare to: 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m. %H A299424 Paul D. Hanna, <a href="/A299424/b299424.txt">Table of n, a(n) for n = 0..200</a> %e A299424 G.g.: A(x) = 1 + 2*x + 3*x^2 + 16*x^3 + 214*x^4 + 4268*x^5 + 110520*x^6 + ... %e A299424 such that %e A299424 1 = 1/A(x) + 2*x/A(x)^3 + 11*x^2/A(x)^6 + 114*x^3/A(x)^10 + 1827*x^4/A(x)^15 + 40508*x^5/A(x)^21 + 1159587*x^6/A(x)^28 + ... %o A299424 (PARI) {a(n) = my(A=[1]); for(i=1, n, A = Vec(sum(m=0, #A, binomial((m+1)*(m+2), m)/((m+1)*(m+2)/2) * x^m/Ser(A)^((m+1)*(m+2)/2-1) ))); A[n+1]} %o A299424 for(n=0, 30, print1(a(n), ", ")) %Y A299424 Cf. A299434. %K A299424 nonn %O A299424 0,2 %A A299424 _Paul D. Hanna_, Feb 13 2018