This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299443 #14 Jan 30 2020 21:29:18 %S A299443 1,3,10,35,127,474,1807,6999,27436,108541,432493,1733174,6977777, %T A299443 28200413,114338320,464857475,1894420045,7736238420,31649963275, %U A299443 129693294945,532216500532,2186868151211,8996351889535,37048736568870,152722557174139,630116066189691 %N A299443 Expansion of (x^4 + 2*x^3 + 7*x^2 - 6*x + 1)^(-1/2). %H A299443 Robert Israel, <a href="/A299443/b299443.txt">Table of n, a(n) for n = 0..1602</a> %F A299443 a(n) = Sum_{k=0..n} 2^k*binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1/2). %F A299443 D-finite with recurrence: a(n) = ((2-n)*a(n-4)+(3-2*n)*a(n-3)+(7-7*n)*a(n-2)+(6*n-3)*a(n-1))/n for n >= 4. %e A299443 From the first formula follows that a(n) = p_{n}(1) of the polynomials p_{n}(x): %e A299443 [0] 1 %e A299443 [1] 3 %e A299443 [2] 9 + x %e A299443 [3] 27 + 8*x %e A299443 [4] 81 + 45*x + x^2 %e A299443 [5] 243 + 216*x + 15*x^2 %e A299443 [6] 729 + 945*x + 132*x^2 + x^3 %e A299443 [7] 2187 + 3888*x + 900*x^2 + 24*x^3 %e A299443 ... %p A299443 ogf := (x^4 + 2*x^3 + 7*x^2 - 6*x + 1)^(-1/2): %p A299443 series(ogf, x, 27): seq(coeff(%,x,n),n=0..25); %t A299443 CoefficientList[ Series[1/Sqrt[x^4 + 2 x^3 + 7 x^2 - 6 x + 1], {x, 0, 25}], x] (* _Robert G. Wilson v_, Feb 11 2018 *) %Y A299443 Cf. A299444. %K A299443 nonn %O A299443 0,2 %A A299443 _Peter Luschny_, Feb 10 2018