cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299443 Expansion of (x^4 + 2*x^3 + 7*x^2 - 6*x + 1)^(-1/2).

This page as a plain text file.
%I A299443 #14 Jan 30 2020 21:29:18
%S A299443 1,3,10,35,127,474,1807,6999,27436,108541,432493,1733174,6977777,
%T A299443 28200413,114338320,464857475,1894420045,7736238420,31649963275,
%U A299443 129693294945,532216500532,2186868151211,8996351889535,37048736568870,152722557174139,630116066189691
%N A299443 Expansion of (x^4 + 2*x^3 + 7*x^2 - 6*x + 1)^(-1/2).
%H A299443 Robert Israel, <a href="/A299443/b299443.txt">Table of n, a(n) for n = 0..1602</a>
%F A299443 a(n) = Sum_{k=0..n} 2^k*binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1/2).
%F A299443 D-finite with recurrence: a(n) = ((2-n)*a(n-4)+(3-2*n)*a(n-3)+(7-7*n)*a(n-2)+(6*n-3)*a(n-1))/n for n >= 4.
%e A299443 From the first formula follows that a(n) = p_{n}(1) of the polynomials p_{n}(x):
%e A299443 [0]    1
%e A299443 [1]    3
%e A299443 [2]    9 +      x
%e A299443 [3]   27 +    8*x
%e A299443 [4]   81 +   45*x +     x^2
%e A299443 [5]  243 +  216*x +  15*x^2
%e A299443 [6]  729 +  945*x + 132*x^2 +    x^3
%e A299443 [7] 2187 + 3888*x + 900*x^2 + 24*x^3
%e A299443 ...
%p A299443 ogf := (x^4 + 2*x^3 + 7*x^2 - 6*x + 1)^(-1/2):
%p A299443 series(ogf, x, 27): seq(coeff(%,x,n),n=0..25);
%t A299443 CoefficientList[ Series[1/Sqrt[x^4 + 2 x^3 + 7 x^2 - 6 x + 1], {x, 0, 25}], x] (* _Robert G. Wilson v_, Feb 11 2018 *)
%Y A299443 Cf. A299444.
%K A299443 nonn
%O A299443 0,2
%A A299443 _Peter Luschny_, Feb 10 2018