This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299444 #5 Feb 10 2018 15:27:20 %S A299444 1,1,2,1,5,4,1,10,16,8,1,17,49,44,16,1,26,121,182,112,32,1,37,256,593, %T A299444 584,272,64,1,50,484,1616,2368,1712,640,128,1,65,841,3848,7921,8312, %U A299444 4720,1472,256,1,82,1369,8254,22841,33002,26704,12448,3328,512 %N A299444 Triangle read by rows, T(n, k) = 2^k*binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1/2) for n >= 0 and 0 <= k <= n. %e A299444 Triangle starts: %e A299444 [0] 1 %e A299444 [1] 1, 2 %e A299444 [2] 1, 5, 4 %e A299444 [3] 1, 10, 16, 8 %e A299444 [4] 1, 17, 49, 44, 16 %e A299444 [5] 1, 26, 121, 182, 112, 32 %e A299444 [6] 1, 37, 256, 593, 584, 272, 64 %e A299444 [7] 1, 50, 484, 1616, 2368, 1712, 640, 128 %e A299444 [8] 1, 65, 841, 3848, 7921, 8312, 4720, 1472, 256 %e A299444 [9] 1, 82, 1369, 8254, 22841, 33002, 26704, 12448, 3328, 512 %p A299444 T := (n, k) -> 2^k*binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1/2): %p A299444 seq(seq(simplify(T(n,k)), k=0..n), n=0..9); %Y A299444 Cf. A299443 (row sums). %K A299444 nonn,tabl %O A299444 0,3 %A A299444 _Peter Luschny_, Feb 10 2018