A299446 Number of n X 3 0..1 arrays with every element equal to 0, 1, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
3, 4, 1, 4, 10, 6, 11, 41, 24, 42, 169, 100, 159, 710, 405, 643, 2995, 1673, 2659, 12648, 6948, 11132, 53434, 29109, 46870, 225916, 122510, 197807, 955669, 517066, 835904, 4044687, 2185734, 3535227, 17123968, 9247255, 14959235, 72513441, 39141547
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0. .0..0..0. .0..1..0. .0..1..1. .0..0..1. .0..1..1. .0..0..0 ..0..0..0. .0..0..0. .0..1..0. .0..1..1. .0..0..1. .0..1..1. .0..0..0 ..0..0..0. .1..1..1. .0..0..0. .1..1..1. .1..1..1. .1..1..1. .0..0..0 ..0..0..0. .1..1..1. .0..1..0. .0..1..1. .1..1..0. .1..0..0. .1..1..1 ..0..0..0. .1..1..1. .0..1..0. .0..1..1. .1..1..0. .1..0..0. .1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A299451.
Formula
Empirical: a(n) = a(n-1) +5*a(n-3) -5*a(n-4) +a(n-5) -2*a(n-6) +2*a(n-7) -2*a(n-8) -8*a(n-9) +5*a(n-10) -10*a(n-11) +10*a(n-12) +a(n-13) +2*a(n-14) +7*a(n-15) +a(n-17) +a(n-18) for n>19.
Comments