cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299447 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

This page as a plain text file.
%I A299447 #4 Feb 10 2018 10:27:56
%S A299447 5,8,4,21,32,36,161,264,430,1475,2598,4872,14489,27382,55350,152073,
%T A299447 300506,637120,1666139,3393668,7453726,18821937,39280750,88534484,
%U A299447 217732841,464385964,1065353486,2568691553,5587193344,12959951420
%N A299447 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
%C A299447 Column 4 of A299451.
%H A299447 R. H. Hardin, <a href="/A299447/b299447.txt">Table of n, a(n) for n = 1..210</a>
%F A299447 Empirical: a(n) = 2*a(n-1) +28*a(n-3) -52*a(n-4) +8*a(n-5) -340*a(n-6) +540*a(n-7) -163*a(n-8) +2342*a(n-9) -2972*a(n-10) +1447*a(n-11) -9888*a(n-12) +9735*a(n-13) -7214*a(n-14) +25815*a(n-15) -21158*a(n-16) +21484*a(n-17) -40314*a(n-18) +35462*a(n-19) -36851*a(n-20) +34259*a(n-21) -49384*a(n-22) +31446*a(n-23) -8240*a(n-24) +50699*a(n-25) -3360*a(n-26) -17526*a(n-27) -37273*a(n-28) -19284*a(n-29) +23240*a(n-30) +25447*a(n-31) +17703*a(n-32) -12731*a(n-33) -18486*a(n-34) -10144*a(n-35) +4751*a(n-36) +5296*a(n-37) +5272*a(n-38) -3166*a(n-39) +3531*a(n-40) +4251*a(n-41) +4861*a(n-42) +468*a(n-43) -5642*a(n-44) -5798*a(n-45) -3385*a(n-46) +241*a(n-47) +3045*a(n-48) +2352*a(n-49) +1058*a(n-50) -51*a(n-51) -900*a(n-52) -327*a(n-53) -301*a(n-54) +29*a(n-55) +79*a(n-56) +12*a(n-57) +47*a(n-58) -2*a(n-59) +3*a(n-60) +2*a(n-61) -2*a(n-62) for n>63
%e A299447 Some solutions for n=5
%e A299447 ..0..0..0..0. .0..0..0..0. .0..1..0..0. .0..1..1..0. .0..0..1..1
%e A299447 ..0..0..0..0. .0..0..0..0. .0..1..0..0. .0..1..1..0. .0..0..1..1
%e A299447 ..0..0..0..0. .1..1..1..1. .1..1..0..0. .1..1..1..1. .1..1..1..1
%e A299447 ..1..1..1..1. .1..1..1..1. .0..1..0..0. .0..1..1..0. .1..1..0..0
%e A299447 ..1..1..1..1. .1..1..1..1. .0..1..0..0. .0..1..1..0. .1..1..0..0
%Y A299447 Cf. A299451.
%K A299447 nonn
%O A299447 1,1
%A A299447 _R. H. Hardin_, Feb 10 2018