This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299471 #21 Jan 16 2024 22:05:53 %S A299471 1,1,1,1,4,1,1,41,11,1,1,768,958,26,1,1,27449,1042642,32596,57,1,1, %T A299471 1887284,34352419335,34359509614,2096731,120,1,1,252522481, %U A299471 72057319189324805,1180591620442534312297,72057594021152435,268434467,247,1,1,66376424160 %N A299471 Regular triangle where T(n,k) is the number of labeled k-uniform hypergraphs spanning n vertices. %H A299471 Andrew Howroyd, <a href="/A299471/b299471.txt">Table of n, a(n) for n = 1..91</a> (rows 1..13) %H A299471 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hypergraph">Hypergraph</a> %F A299471 T(n, k) = Sum_{d = 0..n} (-1)^(n-d)*binomial(n,d)*2^binomial(d,k). %e A299471 Triangle begins: %e A299471 1; %e A299471 1, 1; %e A299471 1, 4, 1; %e A299471 1, 41, 11, 1; %e A299471 1, 768, 958, 26, 1; %e A299471 1, 27449, 1042642, 32596, 57, 1; %e A299471 ... %t A299471 Table[Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,10},{k,n}] %o A299471 (PARI) T(n, k) = sum(d = 0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)) \\ _Andrew Howroyd_, Jan 16 2024 %Y A299471 Columns 1..4 are A000012, A006129, A302374, A302396. %Y A299471 Row sums are A306021. %Y A299471 The unlabeled version is A301922. %Y A299471 The connected version is A299354. %Y A299471 Cf. A000005, A001315, A006126, A038041, A298422, A298426, A306017, A306018, A306019, A306020. %K A299471 nonn,tabl %O A299471 1,5 %A A299471 _Gus Wiseman_, Jun 18 2018