This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299475 #35 Jul 15 2018 13:27:12 %S A299475 1,4,7,10,16,22,34,46,67,91,127,169,232,304,406,529,694,892,1156,1471, %T A299475 1882,2377,3007,3766,4726,5875,7309,9031,11155,13696,16813,20527, %U A299475 25048,30430,36931,44650,53932,64912,78046,93556,112015,133750,159523,189784,225526,267403,316675,374263,441820,520576,612679 %N A299475 a(n) is the number of vertices in the diagram of partitions of n (see example). %C A299475 For n >= 1, A299474(n) is the number of edges and A000041(n) is the number of regions in the mentioned diagram (see example and Euler's formula). %H A299475 Shawn A. Broyles, <a href="/A299475/b299475.txt">Table of n, a(n) for n = 0..1000</a> %F A299475 a(0) = 1; a(n) = 1 + 3*A000041(n), n >= 1. %F A299475 a(n) = A299474(n) - A000041(n) + 1, n >= 1 (Euler's formula). %e A299475 Construction of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6): %e A299475 -------------------------------------------------------------------------------- %e A299475 n ........: 1 2 3 4 5 6 (stage) %e A299475 a(n)......: 4 7 10 16 22 34 (vertices) %e A299475 A299474(n): 4 8 12 20 28 44 (edges) %e A299475 A000041(n): 1 2 3 5 7 11 (regions) %e A299475 -------------------------------------------------------------------------------- %e A299475 r p(n) %e A299475 -------------------------------------------------------------------------------- %e A299475 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A299475 1 .... 1 ....|_| |_| | |_| | | |_| | | | |_| | | | | |_| | | | | | %e A299475 2 .... 2 .........|_ _| |_ _| | |_ _| | | |_ _| | | | |_ _| | | | | %e A299475 3 .... 3 ................|_ _ _| |_ _ _| | |_ _ _| | | |_ _ _| | | | %e A299475 4 |_ _| | |_ _| | | |_ _| | | | %e A299475 5 .... 5 .........................|_ _ _ _| |_ _ _ _| | |_ _ _ _| | | %e A299475 6 |_ _ _| | |_ _ _| | | %e A299475 7 .... 7 ....................................|_ _ _ _ _| |_ _ _ _ _| | %e A299475 8 |_ _| | | %e A299475 9 |_ _ _ _| | %e A299475 10 |_ _ _| | %e A299475 11 .. 11 .................................................|_ _ _ _ _ _| %e A299475 . %e A299475 Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram. %e A299475 Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram. %e A299475 The total number of parts equals the sum of largest parts. %e A299475 Note that every diagram contains all previous diagrams. %e A299475 An infinite diagram is a table of all partitions of all positive integers. %o A299475 (PARI) a(n) = if (n==0, 1, 1+3*numbpart(n)); \\ _Michel Marcus_, Jul 15 2018 %Y A299475 Cf. A000041, A135010, A139582, A141285, A182181, A186114, A193870, A194446, A194447, A206437, A207779, A220482, A220517, A273140, A278355, A278602, A299474. %K A299475 nonn %O A299475 0,2 %A A299475 _Omar E. Pol_, Feb 11 2018