A299480 List of pairs (a,b) where in the n-th pair, a = number of odd divisors of n and b = number of even divisors of n.
1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 1, 3, 3, 0, 2, 2, 2, 0, 2, 4, 2, 0, 2, 2, 4, 0, 1, 4, 2, 0, 3, 3, 2, 0, 2, 4, 4, 0, 2, 2, 2, 0, 2, 6, 3, 0, 2, 2, 4, 0, 2, 4, 2, 0, 4, 4, 2, 0, 1, 5, 4, 0, 2, 2, 4, 0, 3, 6, 2, 0, 2, 2, 4, 0, 2, 6, 2, 0, 4, 4, 2, 0, 2, 4, 6, 0, 2, 2, 2, 0, 2, 8, 3, 0, 3, 3, 4, 0, 2, 4
Offset: 1
Examples
Array begins: n A001227 A183063 1 1 0 2 1 1 3 2 0 4 1 2 5 2 0 6 2 2 7 2 0 8 1 3 9 3 0 10 2 2 11 2 0 12 2 4 ...
Links
Crossrefs
Programs
-
Maple
f := proc (n) local t; t := numtheory:-tau(n/2^padic:-ordp(n, 2)); t, numtheory:-tau(n)-t end proc: map(f, [$1..100]); # Robert Israel, Feb 11 2018
-
Mathematica
m = 105; CoefficientList[Sum[(x^(2n-1) + x^(4n))/(1 - x^(4n)), {n, 1, m/2//Ceiling}] + O[x]^m, x] // Rest (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)
Formula
G.f.: Sum_{n>=1} (x^(2*n-1) + x^(4*n))/(1-x^(4*n)). - Robert Israel, Feb 11 2018
Comments