cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299484 Irregular triangle read by rows in which T(n,k) is the number of cells in the k-th level of the diagram of the symmetric representation of sigma(n).

This page as a plain text file.
%I A299484 #29 Jun 19 2019 17:56:17
%S A299484 1,2,1,2,2,2,3,2,2,2,2,2,3,4,3,2,2,2,2,2,2,4,5,2,2,2,2,4,3,2,2,2,4,6,
%T A299484 2,2,2,2,2,2,2,2,2,2,5,6,7,4,2,2,2,2,2,2,2,2,2,2,2,4,6,4,2,2,2,2,2,3,
%U A299484 6,5,2,2,2,2,2,2,4,8,7,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,8,9,6,2,2,2,2,2
%N A299484 Irregular triangle read by rows in which T(n,k) is the number of cells in the k-th level of the diagram of the symmetric representation of sigma(n).
%C A299484 If n is an odd prime p then row n has length (p + 1)/2 and all terms in row n are 2's.
%C A299484 For more information about the diagram of the symmetric representation of sigma(n) see A237593 and other related sequences.
%H A299484 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%e A299484 Triangle begins:
%e A299484 1;
%e A299484 2, 1;
%e A299484 2, 2;
%e A299484 2, 3, 2;
%e A299484 2, 2, 2;
%e A299484 2, 3, 4, 3;
%e A299484 2, 2, 2, 2;
%e A299484 2, 2, 4, 5, 2;
%e A299484 2, 2, 2, 4, 3;
%e A299484 2, 2, 2, 4, 6, 2;
%e A299484 2, 2, 2, 2, 2, 2;
%e A299484 2, 2, 2, 5, 6, 7, 4;
%e A299484 2, 2, 2, 2, 2, 2, 2;
%e A299484 2, 2, 2, 2, 4, 6, 4, 2;
%e A299484 2, 2, 2, 2, 3, 6, 5, 2;
%e A299484 2, 2, 2, 2, 2, 4, 8, 7, 2;
%e A299484 2, 2, 2, 2, 2, 2, 2, 2, 2;
%e A299484 2, 2, 2, 2, 2, 4, 8, 9, 6, 2;
%e A299484 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
%e A299484 ...
%Y A299484 Row sums give A000203.
%Y A299484 Row n has length A008619(n).
%Y A299484 Column 1 is A040000.
%Y A299484 Cf. A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A244050, A245092, A249351, A262611, A262626, A281010, A296508.
%K A299484 nonn,tabf
%O A299484 1,2
%A A299484 _Omar E. Pol_, Feb 22 2018