A299490 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5; see Comments.
1, 3, 5, 12, 17, 21, 24, 27, 30, 34, 38, 42, 45, 49, 53, 57, 61, 65, 70, 74, 79, 83, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 204, 208, 212, 216, 220, 224
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6; a[n_] := a[n] = b[n - 1] + b[n - 2] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299490 *) Table[b[n], {n, 0, 100}] (* A299491 *)
Comments