A299491 Solution b( ) of the complementary equation a(n) = b(n-1) + b(n-2) + b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5; see Comments.
2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6; a[n_] := a[n] = b[n - 1] + b[n - 2] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; u = Table[a[n], {n, 0, 100}] (* A299490 *) v = Table[b[n], {n, 0, 100}] (* A299491 *)
Comments