cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299492 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + b(n-3), where a(0) = 2, a(1) = 4, a(2) = 5; see Comments.

This page as a plain text file.
%I A299492 #5 Jan 05 2025 19:51:41
%S A299492 2,4,5,10,16,21,24,28,32,36,39,42,46,50,54,57,61,65,70,74,78,82,86,90,
%T A299492 94,98,102,106,110,115,119,124,128,132,136,140,144,148,152,156,160,
%U A299492 164,169,173,177,181,185,189,193,197,201,204,208,212,216,220,224
%N A299492 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + b(n-3), where a(0) = 2, a(1) = 4, a(2) = 5; see Comments.
%C A299492 From the Bode-Harborth-Kimberling link:
%C A299492 a(n) = b(n-1) + b(n-2) + b(n-3) for n > 2;
%C A299492 b(0) = least positive integer not in {a(0),a(1),a(2)};
%C A299492 b(n) = least positive integer not in {a(0),...,a(n),b(0),...,b(n-1)} for n > 1.
%C A299492 Note that (b(n)) is strictly increasing and is the complement of (a(n)).
%C A299492 See A022424 for a guide to related sequences.
%H A299492 J-P. Bode, H. Harborth, C. Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/45-3/bode.pdf">Complementary Fibonacci sequences</a>, Fibonacci Quarterly 45 (2007), 254-264.
%t A299492 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
%t A299492 a[0] = 2; a[1] = 4; a[2] = 5; b[0] = 1; b[1] = 3; b[2] = 6;
%t A299492 a[n_] := a[n] = b[n - 1] + b[n - 2] + b[n - 3];
%t A299492 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
%t A299492 Table[a[n], {n, 0, 100}]    (* A299492 *)
%t A299492 Table[b[n], {n, 0, 100}]    (* A299493 *)
%Y A299492 Cf. A022424, A299493.
%K A299492 nonn,easy
%O A299492 0,1
%A A299492 _Clark Kimberling_, Feb 20 2018