A299494 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + b(n-3), where a(0) = 2, a(1) = 4, a(2) = 6; see Comments.
2, 4, 6, 9, 15, 20, 25, 29, 33, 36, 39, 43, 47, 51, 54, 58, 62, 66, 69, 73, 77, 81, 85, 89, 93, 97, 101, 106, 110, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 205, 209, 213, 217, 221, 225, 229
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 2; a[1] = 4; a[2] = 6; b[0] = 1; b[1] = 3; b[2] = 5; a[n_] := a[n] = b[n - 1] + b[n - 2] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299494 *) Table[b[n], {n, 0, 100}] (* A299495 *)
Comments