A299496 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + b(n-3), where a(0) = 3, a(1) = 4, a(2) = 5; see Comments.
3, 4, 5, 6, 12, 18, 24, 27, 30, 34, 38, 42, 45, 48, 52, 56, 60, 63, 66, 70, 74, 79, 83, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 133, 137, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 187, 191, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 3; a[1] = 4; a[2] = 5; b[0] = 1; b[1] = 2; b[2] = 6; a[n_] := a[n] = b[n - 1] + b[n - 2] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299496 *) Table[b[n], {n, 0, 100}] (* A299497 *)
Comments