cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299498 Integers primitively represented by cyclotomic binary forms.

This page as a plain text file.
%I A299498 #9 Apr 06 2024 15:00:17
%S A299498 3,5,7,10,11,13,17,19,21,25,26,29,31,34,37,39,41,43,49,50,53,55,57,58,
%T A299498 61,65,67,73,74,79,82,85,89,91,93,97,101,103,106,109,111,113,121,122,
%U A299498 125,127,129,130,133,137,139,145,146,147,149,151,157,163,169,170
%N A299498 Integers primitively represented by cyclotomic binary forms.
%C A299498 A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is primitively represented by f if f(x,y) = n has an integer solution such that x is prime to y.
%H A299498 Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017.
%o A299498 (Julia)
%o A299498 using Nemo
%o A299498 function isA299498(n)
%o A299498     isPrimeTo(n, k) = gcd(ZZ(n), ZZ(k)) == ZZ(1)
%o A299498     R, x = PolynomialRing(ZZ, "x")
%o A299498     K = Int(floor(5.383*log(n)^1.161)) # Bounds from
%o A299498     M = Int(floor(2*sqrt(n/3)))  # Fouvry & Levesque & Waldschmidt
%o A299498     N = QQ(n)
%o A299498     for k in 3:K
%o A299498         e = Int(eulerphi(ZZ(k)))
%o A299498         c = cyclotomic(k, x)
%o A299498         for m in 1:M, j in m+1:M if isPrimeTo(m, j)
%o A299498             N == m^e*subst(c, QQ(j,m)) && return true
%o A299498     end end end
%o A299498     return false
%o A299498 end
%o A299498 A299498list(upto) = [n for n in 1:upto if isA299498(n)]
%o A299498 print(A299498list(170))
%Y A299498 Cf. A293654, A296095, A299214, A299733, A299928, A299929, A299930, A299956, A299964.
%K A299498 nonn
%O A299498 1,1
%A A299498 _Peter Luschny_, Feb 25 2018