This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299498 #9 Apr 06 2024 15:00:17 %S A299498 3,5,7,10,11,13,17,19,21,25,26,29,31,34,37,39,41,43,49,50,53,55,57,58, %T A299498 61,65,67,73,74,79,82,85,89,91,93,97,101,103,106,109,111,113,121,122, %U A299498 125,127,129,130,133,137,139,145,146,147,149,151,157,163,169,170 %N A299498 Integers primitively represented by cyclotomic binary forms. %C A299498 A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is primitively represented by f if f(x,y) = n has an integer solution such that x is prime to y. %H A299498 Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017. %o A299498 (Julia) %o A299498 using Nemo %o A299498 function isA299498(n) %o A299498 isPrimeTo(n, k) = gcd(ZZ(n), ZZ(k)) == ZZ(1) %o A299498 R, x = PolynomialRing(ZZ, "x") %o A299498 K = Int(floor(5.383*log(n)^1.161)) # Bounds from %o A299498 M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt %o A299498 N = QQ(n) %o A299498 for k in 3:K %o A299498 e = Int(eulerphi(ZZ(k))) %o A299498 c = cyclotomic(k, x) %o A299498 for m in 1:M, j in m+1:M if isPrimeTo(m, j) %o A299498 N == m^e*subst(c, QQ(j,m)) && return true %o A299498 end end end %o A299498 return false %o A299498 end %o A299498 A299498list(upto) = [n for n in 1:upto if isA299498(n)] %o A299498 print(A299498list(170)) %Y A299498 Cf. A293654, A296095, A299214, A299733, A299928, A299929, A299930, A299956, A299964. %K A299498 nonn %O A299498 1,1 %A A299498 _Peter Luschny_, Feb 25 2018