This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299499 #19 Feb 26 2018 04:19:45 %S A299499 1,1,1,2,2,1,5,5,3,1,11,16,9,4,1,26,44,34,14,5,1,63,122,111,60,20,6,1, %T A299499 153,341,351,225,95,27,7,1,376,940,1103,796,400,140,35,8,1,931,2581, %U A299499 3384,2764,1561,651,196,44,9,1,2317,7064,10224,9304,5915,2772,994,264,54,10,1 %N A299499 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n. %F A299499 Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then %F A299499 2^n*P_{n}(1/2) = A298611(n). %F A299499 P_{n}(-1) = A182883(n), P_{n}(0) = A051286(n). %F A299499 P_{n}( 1) = A108626(n), P_{n}(2) = A299443(n). %F A299499 The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 + 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences. %F A299499 These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)+(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+2*k+4. %F A299499 The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle). %e A299499 The partial polynomials p_{n,k}(x) start: %e A299499 [0] 1 %e A299499 [1] 1, x %e A299499 [2] 1, 2*x+ 1, x^2 %e A299499 [3] 1, 3*x+ 4, 3*x^2+ 2*x, x^3 %e A299499 [4] 1, 4*x+ 9, 6*x^2+12*x+1, 4*x^3+ 3*x^2, x^4 %e A299499 [5] 1, 5*x+16, 10*x^2+36*x+9, 10*x^3+24*x^2+3*x, 5*x^4+4*x^3, x^5 %e A299499 . %e A299499 The polynomials P_{n}(x) start: %e A299499 [0] 1 %e A299499 [1] 1 + x %e A299499 [2] 2 + 2*x + x^2 %e A299499 [3] 5 + 5*x + 3*x^2 + x^3 %e A299499 [4] 11 + 16*x + 9*x^2 + 4*x^3 + x^4 %e A299499 [5] 26 + 44*x + 34*x^2 + 14*x^3 + 5*x^4 + x^5 %e A299499 . %e A299499 The triangle starts: %e A299499 [0] 1 %e A299499 [1] 1, 1 %e A299499 [2] 2, 2, 1 %e A299499 [3] 5, 5, 3, 1 %e A299499 [4] 11, 16, 9, 4, 1 %e A299499 [5] 26, 44, 34, 14, 5, 1 %e A299499 [6] 63, 122, 111, 60, 20, 6, 1 %e A299499 [7] 153, 341, 351, 225, 95, 27, 7, 1 %e A299499 [8] 376, 940, 1103, 796, 400, 140, 35, 8, 1 %e A299499 [9] 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1 %e A299499 . %e A299499 The square array P_{n}(k) near k=0: %e A299499 ...... [k=-2] 1, -1, 2, -1, -1, 10, -25, 51, -68, 41, ... %e A299499 A182883 [k=-1] 1, 0, 1, 2, 1, 6, 7, 12, 31, 40, ... %e A299499 A051286 [k=0] 1, 1, 2, 5, 11, 26, 63, 153, 376, 931, ... %e A299499 A108626 [k=1] 1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, ... %e A299499 A299443 [k=2] 1, 3, 10, 35, 127, 474, 1807, 6999, 27436, 108541, ... %e A299499 ...... [k=3] 1, 4, 17, 74, 329, 1490, 6855, 31956, 150607, 716236, ... %p A299499 CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)): %p A299499 PrintPoly := p -> print(sort(expand(p),x,ascending)): %p A299499 T := (n,k) -> x^k*binomial(n, k)*hypergeom([-k,k-n,k-n], [1,-n], 1/x): %p A299499 P := [seq(add(simplify(T(n,k)),k=0..n), n=0..10)]: %p A299499 seq(CoeffList(p), p in P); seq(PrintPoly(p), p in P); %p A299499 R := proc(n,k) option remember; # Recurrence %p A299499 if n < 4 then return [1,k+1,(k+1)^2+1,(k+1)^3+2*k+4][n+1] fi; ((2-n)*R(n-4,k)+ %p A299499 (3-2*n)*(k-1)*R(n-3,k)+(k^2+2*k-1)*(1-n)*R(n-2,k)+(2*n-1)*(k+1)*R(n-1,k))/n end: %p A299499 for k from -2 to 3 do lprint(seq(R(n,k), n=0..9)) od; %t A299499 nmax = 10; %t A299499 p[n_, k_, x_] := x^k*Binomial[n, k]*HypergeometricPFQ[{-k, k-n, k-n}, {1, -n}, 1/x]; %t A299499 p[n_, x_] := Sum[p[n, k, x], {k, 0, n}]; %t A299499 Table[CoefficientList[p[n, x], x], {n, 0, nmax}] // Flatten (* _Jean-François Alcover_, Feb 26 2018 *) %Y A299499 Cf. A051286, A108625, A108626, A182883, A298611, A299443, A299500. %K A299499 nonn,tabl %O A299499 0,4 %A A299499 _Peter Luschny_, Feb 11 2018