cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299501 Expansion of (1 - 6*x + 7*x^2 - 2*x^3 + x^4)^(-1/2).

Original entry on oeis.org

1, 3, 10, 37, 145, 588, 2437, 10251, 43582, 186785, 805585, 3492064, 15200753, 66399763, 290910490, 1277803957, 5625184321, 24811849020, 109631120869, 485153695995, 2149941422590, 9539307910561, 42374000475457, 188421560848512, 838633172823745, 3735857124917763
Offset: 0

Views

Author

Peter Luschny, Feb 15 2018

Keywords

Comments

See A299500 for a family of related polynomials.

Crossrefs

Programs

  • Maple
    a := n -> add(2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/2), k=0..n): seq(simplify(a(n)), n=0..25);
  • Mathematica
    CoefficientList[Series[(1 - 6 x + 7 x^2 - 2 x^3 + x^4 )^(-1/2), {x, 0, 25}], x]

Formula

a(n) = Sum_{k=0..n} 2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/2).
D-finite with recurrence: (-2+n)*a(-4+n) + (-2*n+3)*a(n-3) + (7*n-7)*a(-2+n) + (-6*n+3)*a(-1+n) + n*a(n) = 0.
A249946(n) = a(n) - 2*a(n-1) + a(n-2) for n >= 2.