cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299505 Numbers of the form x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4, where x and y are positive integers.

Original entry on oeis.org

5, 31, 80, 121, 211, 341, 405, 496, 781, 1031, 1280, 1441, 1555, 1936, 2101, 2511, 2801, 3125, 3355, 3376, 4141, 4651, 4681, 5261, 5456, 6480, 6505, 6841, 7381, 7936, 8431, 9031, 9801, 9881, 11111, 11605, 12005, 12496, 13981, 14251, 15961, 16105, 16496, 17091, 17891
Offset: 1

Views

Author

Peter Luschny, Mar 02 2018

Keywords

Crossrefs

Cf. A024614, A002649 (subsequence of primes).

Programs

  • Julia
    function isA299505(n)
        n % 5 >= 2 && return false
        n == 5 && return true
        K = Int(floor(5.383*log(n)^1.161))
        M = Int(floor(2*sqrt(n/3)))
        for k in 3:K
            for y in 2:M, x in 1:y
                n == x^4+y*x^3+y^2*x^2+y^3*x+y^4 && return true
        end end
        return false
    end
    A299505list(upto) = [n for n in 1:upto if isA299505(n)]
    println(A299505list(18000))