This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299529 #19 Jan 26 2024 15:54:49 %S A299529 5,35,35,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %T A299529 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A299529 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A299529 Number of Johnson solids with exactly n types of faces. %C A299529 The possible types of faces of a Johnson solid are triangles, squares, pentagons, hexagons, octagons, and decagons. See A299114 comments. %H A299529 Norman W. Johnson, <a href="http://dx.doi.org/10.4153/CJM-1966-021-8">Convex Polyhedra with Regular Faces</a>, Canadian Journal of Mathematics, 18 (1966), 169-200. %H A299529 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JohnsonSolid.html">Johnson Solid</a>. %H A299529 Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_Johnson_solids">List of Johnson solids</a>. %H A299529 Victor A. Zalgaller, <a href="http://mi.mathnet.ru/eng/znsl1408">Convex Polyhedra with Regular Faces</a>, Zap. Nauchn. Sem. LOMI, 1967, Volume 2. Pages 5-221 (Mi znsl1408). %F A299529 Sum(n>0, a(n)) = 92, the number of Johnson solids. %F A299529 a(n) = 0 for n>4. %e A299529 Each of the five Johnson solids J12, J13, J17, J51, J84 has only one type of face, so a(1) = 5. %Y A299529 Cf. A299114, A299530. %K A299529 nonn %O A299529 1,1 %A A299529 _Jonathan Sondow_, Feb 11 2018