A299531 Solution a( ) of the complementary equation a(n) = 2*b(n-1) + b(n-2), where a(0) = 1, a(1) = 2; see Comments.
1, 2, 11, 14, 17, 20, 23, 26, 29, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 83, 88, 92, 95, 98, 103, 107, 110, 115, 119, 122, 125, 130, 134, 137, 142, 146, 149, 152, 157, 161, 164, 169, 173, 176, 179, 184, 188, 191, 196, 200, 203, 206, 211, 215, 218, 223
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; a[n_] := a[n] = 2*b[n - 1] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299531 *) Table[b[n], {n, 0, 100}] (* A299532 *)
Comments