cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299537 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that x or y is a power of 4 (including 4^0 = 1) and x + 3*y is also a power of 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 4, 3, 1, 1, 2, 6, 1, 1, 2, 3, 1, 1, 8, 6, 2, 4, 3, 8, 3, 1, 6, 8, 4, 1, 6, 10, 3, 4, 2, 5, 6, 3, 4, 8, 1, 1, 7, 5, 1, 1, 5, 6, 4, 2, 4, 13, 5, 6, 7, 5, 5, 1, 3, 7, 2, 1, 3, 12, 6, 2, 11, 5, 5, 3, 7, 11, 2, 1, 6, 13, 5, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 04 2018

Keywords

Comments

Conjecture (i): a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m with k = 0,1,2,... and m = 1, 2, 3, 5, 7, 11, 15, 19, 43, 47, 135, 1103.
Conjecture (ii): For any integer n > 1, we can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that 2*x or 2*y is a power of 4 and 2*(x+3*y) is also a power of 4.
Note that 81503^2 cannot be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and both x and x + 3*y in the set {4^k: k = 0,1,2,...}. However, 81503^2 = 16372^2 + 4^2 + 52372^2 + 60265^2 with 4 = 4^1 and 16372 + 3*4 = 4^7.
We have verified that the conjecture for n up to 10^7.
See also the related comments in A300219 and A300360, and a similar conjecture in A299794.

Examples

			a(2) = 1 since 2^2 = 1^2 + 1^2 + 1^2 + 1^2 with 1 = 4^0 and 1 + 3*1 = 4^1.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4 = 4^1 and 4 + 3*0 = 4^1.
a(19) = 1 since 19^2 = 1^2 + 0^2 + 6^2 + 18^2 with 1 = 4^0 and 1 + 3*0 = 4^0.
a(43) = 1 since 43^2 = 4^2 + 20^2 + 8^2 + 37^2 with 4 = 4^1 and 4 + 3*20 = 4^3.
a(135) = 1 since 135^2 = 16^2 + 16^2 + 17^2 + 132^2 with 16 = 4^2 and 16 + 3*16 = 4^3.
a(1103) = 1 since 1103^2 = 4^2 + 4^2 + 716^2 + 839^2 with 4 = 4^1 and 4 + 3*4 = 4^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]];
    tab={};Do[r=0;Do[If[(Pow[y]||Pow[4^k-3y])&&SQ[n^2-y^2-(4^k-3y)^2-z^2],r=r+1],{k,0,Log[4,Sqrt[10]*n]},{y,0,Min[n,4^k/3]},{z,0,Sqrt[Max[0,(n^2-y^2-(4^k-3y)^2)/2]]}];tab=Append[tab,r],{n,1,80}];Print[tab]