cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A332155 Numbers with palindromic Morse code A060109.

Original entry on oeis.org

0, 5, 19, 28, 37, 46, 55, 64, 73, 82, 91, 109, 159, 208, 258, 307, 357, 406, 456, 505, 555, 604, 654, 703, 753, 802, 852, 901, 951, 1009, 1199, 1289, 1379, 1469, 1559, 1649, 1739, 1829, 1919, 2008, 2198, 2288, 2378, 2468, 2558, 2648, 2738, 2828, 2918, 3007
Offset: 1

Views

Author

M. F. Hasler, Nov 02 2020

Keywords

Comments

Also, numbers whose decimal digits (d[0], ..., d[n]) are such that for all k = 0..n, d[k] + d[n-k] = 0 (mod 10). In particular, if the number of digits n+1 is odd, the middle digit must be either 5 or 0.
The variant A299539 is obtained by excluding terms with a digit 0, i.e., removing all terms that are in A011540, or taking intersection with zeroless numbers A052382. - M. F. Hasler, Nov 25 2020

Examples

			The Morse code for digits is "-----" for 0, ".----" for 1, "..---" for 2, ..., "....." for 5, "-...." for 6, ..., "----." for 9. (In A060109 a dot is coded with a digit 1 and a dash with a digit 2.)
We see that 0 and 5 are the only digits with palindromic Morse code, this yields a(1) and a(2).
Two digit numbers must be of the form 10*a + (10-a), with a = 1, ..., 9, in order to have palindromic Morse code. This yields the 9 terms a(3), ..., a(11).
Three-digit terms must have 0 or 5 as middle digit and yield a two-digit term when that middle digit is deleted: this yields the next 18 terms a(12 .. 29).
		

Crossrefs

Cf. A060109 (Morse code of n), A002113 (palindromes), A004086 (reverse n), A299539 (variant without the terms with digit 0).

Programs

  • Mathematica
    With[{a = Association@ Array[# -> If[# < 6, PadRight[ConstantArray[1, #], 5, 2], PadRight[ConstantArray[2, # - 5], 5, 1]] &, 10, 0]}, Select[Range[0, 3007], PalindromeQ[Flatten@ Riffle[Map[Lookup[a, #] &, IntegerDigits[#]], 0]] &]] (* Michael De Vlieger, Nov 02 2020 *)
  • PARI
    select( is(n)=(Vecrev(n=digits(n))+n)%10==0, [0..3333])

Formula

Sequence is { N | A060109(N) is in A002113 }.
Showing 1-1 of 1 results.