A299540 Solution b( ) of the complementary equation a(n) = b(n-1) + b(n-3), where a(0) = 2, a(1) = 3, a(2) = 5; see Comments.
1, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 94, 96, 98, 99, 100
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 2; a[1] = 3; a[2] = 5; b[0] = 1; b[1] = 4; a[n_] := a[n] = b[n - 1] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A022438 *) Table[b[n], {n, 0, 100}] (* A299540 *)
Comments