A299543 Solution a( ) of the complementary equation a(n) = 2*b(n-1) + b(n-2) - b(n-3), where a(0) = 1, a(1) = 2, a(2) = 3; see Comments.
1, 2, 3, 13, 15, 17, 19, 21, 23, 25, 29, 34, 38, 42, 46, 50, 54, 56, 57, 61, 64, 65, 67, 71, 74, 75, 79, 82, 83, 87, 90, 91, 95, 98, 99, 103, 106, 107, 111, 118, 121, 121, 125, 128, 133, 139, 140, 141, 145, 148, 153, 157, 157, 161, 164, 169, 173, 173, 177
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; b[1] = 5; a[n_] := a[n] = 2 b[n - 1] + b[n - 2] - b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299543 *) Table[b[n], {n, 0, 100}] (* A299544 *)
Comments